

senaite.jsonapi

This add-on is a RESTful JSON API for SENAITE LIMS [https://www.senaite.com], that allows to Create,
Read and Update (CRU operations) through http GET/POST requests. It uses JSON as
the format for data representation.

The development of SENAITE JSONAPI was strongly driven by the experience gained
while developing plone.jsonapi.routes [https://pypi.python.org/pypi/plone.jsonapi.routes], with which SENAITE JSONAPI shares most
of the underlying software design solutions. The main difference between them is
that plone.jsonapi.routes [https://pypi.python.org/pypi/plone.jsonapi.routes] is a Plone-specific RESTful JSON API, while
senaite.jsonapi is SENAITE-specific. For these very same reasons, this
documentation is an adapted version of plone.jsonapi.routes’s documentation [https://plonejsonapiroutes.readthedocs.io/],
with the consent of it’s author.

This documentation is divided in different parts. We recommend that you get
started with Installation and then head over to the Quickstart.
Please check out the API documentation for internals about
senaite.jsonapi.

Table of Contents:

	Installation
	JSON Viewers and REST clients

	Quickstart
	Version route

	Content Routes

	UID Route

	Authentication
	Login

	Logout

	Basic Authentication

	API
	Concept

	Base URL

	Resources

	Operations

	Users Resource

	Catalogs Resource

	Search Resource

	Parameters

	Response Format

	CRUD
	Unified API

	CREATE

	READ

	UPDATE

	DELETE

	Customizing
	Adding a custom route provider

	Adding a custom data adapter

	Adding a custom data manager

	Adding a custom field manager

	Adding a custom catalog tool

	Adding a custom catalog query adapter

	Adding an adapter for create operation

	Adding an adapter for update operation

	PUSH endpoint. Custom jobs

	Doctests
	AUTH

	VERSION

	USERS

	CATALOGS

	SEARCH

	CREATE

	READ

	UPDATE

	PUSH

	Test Setup

	Changelog
	1.2.5 (unreleased)

	1.2.4 (2021-07-23)

	1.2.3 (2020-08-05)

	1.2.2 (2020-03-03)

	1.2.1 (2020-03-02)

	1.2.0 (2018-01-03)

	1.1.0 (2017-11-04)

	1.0.1 (2017-09-30)

	1.0.0 (2017-09-30)

Installation

To install senaite.jsonapi in your SENAITE instance, simply add this add-on
in your buildout configuration file as follows, and run bin/buildout
afterwards:

[buildout]

...

[instance]
...
eggs =
 ...
 senaite.jsonapi

With this configuration, buildout will download and install the latest published
release of senaite.jsonapi from Pypi [https://pypi.org/project/senaite.jsonapi].

The routes for SENAITE LIMS content types get registered on startup. The
following URL should be available after startup:

http://localhost:8080/senaite/@@API/senaite/v1

JSON Viewers and REST clients

There are plenty of add-ons for browsers that beautify the generated JSON,
making it’s interpretation more comfortable for humans. Below, some plugins you
can install in your browser:

	JSONView for Firefox [https://addons.mozilla.org/de/firefox/addon/jsonview]

	JSON Lite for Firefox [https://addons.mozilla.org/en-US/firefox/addon/json-lite]

	JSONView for Google Chrome [https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc?hl=en]

Below, some applications to send POST requests to senaite.jsonapi:

	RESTClient for Firefox [https://addons.mozilla.org/en-US/firefox/addon/restclient/]

	Advanced REST Client for Google Chrome [https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo]

Quickstart

This section gives an introduction about senaite.jsonapi [https://pypi.python.org/pypi/senaite.jsonapi]. It assumes you
have SENAITE LIMS [https://www.senaite.com] and senaite.jsonapi already installed. The JSON API is
therefore located at http://localhost:8080/senaite/@@API/senaite/v1. Make
sure your SENAITE LIMS instance is located on the same URL, so you can directly
click on the links within the examples.

All the coming examples are executed directly in Google Chrome. JSONView_
is used to beautify the generated JSON and the Advanced Rest Client [https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo] Application
to send POST requests to senaite.jsonapi [https://pypi.python.org/pypi/senaite.jsonapi]. See Installation for details.

Version route

The version route prints out the current version of senaite.jsonapi.

http://localhost:8080/senaite/@@API/senaite/v1/version

{
 url: "http://localhost:8080/senaite/@@API/senaite/v1/version",
 date: "2020-03-03",
 version: "1.2.2",
 _runtime: 0.0036830902099609375
}

Note

The runtime indicates the time spent in milliseconds until the
response is prepared.

Content Routes

senaite.jsonapi allows you to directly retrieve contents by their portal_type
name. These Resources are automatically generated for all available
content types in SENAITE.

Each content route is located at the Base URL, e.g.

	http://localhost:8080/senaite/@@API/senaite/v1/client

	http://localhost:8080/senaite/@@API/senaite/v1/analysisrequest

The name of each of these content routes is transformed to lower case, so it is
also perfectly ok to call these Resources like so:

	http://localhost:8080/senaite/@@API/senaite/v1/Client

	http://localhost:8080/senaite/@@API/senaite/v1/AnalysisRequest

For instance, calling a content route like

	http://localhost:8080/senaite/@@API/senaite/v1/client

will return a JSON containing records of type Client only:

{
 count: 1596,
 pagesize: 25,
 items: [
 {
 uid: "ffce0bba48204c63a62b0744a6b762bf",
 id: "client1",
 ...
 portal_type: "Client",
 ...
 },
 {},
 {},
 ...
],
 page: 1,
 _runtime: 0.09960794448852539,
 next: "http://localhost:8080/senaite/@@API/senaite/v1/client?b_start=25",
 pages: 64,
 previous: null
}

Some examples of searches for SENAITE-specific portal types below:

	Analysis Services: http://localhost:8080/senaite/@@API/senaite/v1/analysisservice

	Calculations: http://localhost:8080/senaite/@@API/senaite/v1/calculation

	Samples: http://localhost:8080/senaite/@@API/senaite/v1/analysisrequest

	Worksheets: http://localhost:8080/senaite/@@API/senaite/v1/worksheet

Check out senaite.core’s types.xml [https://github.com/senaite/senaite.core/tree/master/bika/lims/profiles/default/types] for the full list of portal types that
come with SENAITE LIMS by default. Keep in mind that senaite.jsonapi will also
handle other portal types that might be registered by other add-ons. For
instance, SENAITE Health, an extension for health-care labs [https://pypi.org/project/senaite.health] registers a new
portal type named Patient. If you have this add-on installed, the url
http://locahost:8080/senaite/@@API/senaite/v1/patient will work as well,
returning the list of objects from type Patient.

From the JSON response above, note the following:

The Response Format in senaite.jsonapi content URLs is always the
same. The top level keys (data after the first {) are meta information
about the gathered data.

The items list will contain the list of results. Each result is a record
with just the metadata available in the catalog. Therefore, no object is
“waked up” at this stage. This is because of the APIs two step concept,
which postpones expensive operations, until the user really wants it.

All items are batched to increase performance of the API. The count number
returns the total number objects found, while the page number returns the
number of pages in the batch, which can be navigated with the next and
previous links.

Get records full data

To get all data from an object, you can either add the complete=True
parameter, or you can request the data with the object UID.

	http://localhost:8080/senaite/@@API/senaite/v1/client?complete=True

	http://localhost:8080/senaite/@@API/senaite/v1/client/<uid>

	http://localhost:8080/senaite/@@API/senaite/v1/<uid>

The requested content(s) is now loaded by the API and all fields are gathered.

Note

Please keep in mind that large data sets with the ?complete=True
Parameter might increase the loading time significantly.

UID Route

To fetch the full data of an object immediately, it is also possible to append
the UID of the object directly on the root URL of the API, e.g.:

	http://localhost:8080/senaite/@@API/senaite/v1/ffce0bba48204c63a62b0744a6b762bf

	http://localhost:8080/senaite/@@API/senaite/v1/client/ffce0bba48204c63a62b0744a6b762bf

Note

The given UID might seem different on your machine.

The response will give the data in the root of the JSON data, so only the
object metadata is returned, e.g.:

{
 expirationDate: "2019-05-02T11:53:13+02:00",
 _runtime: 0.03150486946105957,
 exclude_from_nav: null,
 BankBranch: null,
 Fax: null,
 title: "Happy Hills",
 parent_id: "clients",
 location: null,
 parent_url: "http://localhost:8080/senaite/@@API/senaite/v1/clientfolder/b7e8d2288af74092afe0cf3a0e172f87",
 PhysicalAddress: {
 city: "Barcelona",
 district: "",
 zip: "",
 country: "Spain",
 state: "Catalonia",
 address: ""
 },
 portal_type: "Client",
 AccountName: null,
 language: "en",
 BulkDiscount: null,
 parent_uid: "b7e8d2288af74092afe0cf3a0e172f87",
 parent_path: "/senaite/clients",
 rights: null,
 AccountNumber: null,
 modified: "2019-07-24T23:14:57+02:00",
 EmailAddress: null,
 BillingAddress: {
 city: "",
 district: "",
 zip: "",
 country: "",
 state: "",
 address: ""
 },
 ...
}

Authentication

The API provides a simple way to authenticate a user with SENAITE.

Login

	URL Schema

	<BASE URL>/login?__ac_name=<username>&__ac_password=<password>

The response will set the __ac cookie for further cookie authenticated requests.

Note

Currently only cookie authentication works. Other PAS plugins might
not work as expected.

Example

http://localhost:8080/senaite/@@API/senaite/v1/login?__ac_name=admin&__ac_password=admin

Response

{
 url: "http://localhost:8080/senaite/@@API/senaite/v1/users",
 count: 1,
 _runtime: 0.0019960403442382812,
 items: [
 {
 username: "admin",
 authenticated: true,
 last_login_time: "",
 roles: [
 "Manager",
 "Authenticated"
],
 url: "http://localhost:8080/senaite/@@API/senaite/v1/users/admin",
 email: null,
 groups: [],
 fullname: null,
 id: "admin",
 login_time: ""
 }
]
}

Logout

	URL Schema

	<BASE URL>/users/logout

The response will expire the __ac cookie for further requests.

Example

http://localhost:8080/senaite/@@API/senaite/v1/users/logout

Response

{
 url: "http://localhost:8080/senaite/@@API/senaite/v1/users",
 _runtime: 0.0009028911590576172,
 success: true
}

Basic Authentication

	URL Schema

	<BASE URL>/auth

If the request is not authenticated, this route will raise an unauthorized
response with status code 401. Browsers should display the Basic Authentication
login.

Example

http://localhost:8080/senaite/@@API/senaite/v1/auth

API

This part of the documentation covers all resources (routes) provided by
senaite.jsonapi [https://github.com/senaite/senaite.jsonapi]. It also covers all the request parameters that can be
applied to these resources to refine the results.

Concept

The SENAITE JSON API aims to be as fast as possible. So the concept of the API
is to postpone expensive operations until the user really requests it. To do
so, the API was built with a two step architecture.

An expensive operation is basically given, when the API needs to “wake up”
an object to retrieve all its field values. This means the full object has to be
loaded from the Database (ZODB) into the memory (RAM).

The two step architecture retrieves only the fields of the catalog results
in the first step. Only if the user requests the API URL of a specific object,
the object will be loaded and all the fields of the object will be returned.

Note

You can add a complete=yes parameter to bypass the two step behavior
and retrieve the full object data immediately.

Base URL

After installation, the SENAITE API routes are available below the
senaite.jsonapi root URL (@@API), with the base /senaite/api/v1.

Example: http://localhost:8080/senaite/@@API/senaite/v1/version

Resources

	URL Schema

	<BASE URL>/<RESOURCE>/<OPERATION>/<uid:optional>

A resource is equivalent with the portal type name in SENAITE.

This means that all portal types are fully supported by the API simply by adding
the portal type to the end of the base url, e.g.:

	http://localhost:8080/senaite/@@API/senaite/v1/Client

	http://localhost:8080/senaite/@@API/senaite/v1/AnalysisService

	http://localhost:8080/senaite/@@API/senaite/v1/AnalysisRequest

Note

Lower case portal type names are also supported.

Operations

The API understands the basic CRUD [http://en.wikipedia.org/wiki/CRUD] operations on the content resources.
Only the READ operation is accessible via a HTTP GET request. All other
operations have to be sent via a HTTP POST request.

	OPERATION

	URL

	METHOD

	READ

	<BASE URL>/<RESOURCE>/<uid:optional>

	GET

	CREATE

	<BASE URL>/<RESOURCE>/create/<uid:optional>

	POST

	UPDATE

	<BASE URL>/<RESOURCE>/update/<uid:optional>

	POST

	DELETE

	<BASE URL>/<RESOURCE>/delete/<uid:optional>

	POST

Note

For traceability reasons, delete operation is not supported in
SENAITE LIMS. When delete operation is used, the system tries to
deactivate the object instead.

It is also possible to get the contents by UID directly from the base url,
without the need of <RESOURCE>, e.g.:

	http://localhost:8080/senaite/@@API/senaite/v1/<uid>

This principle not applies to VIEW operation only, but to UPDATE and
DELETE too. When the UID is directly used, <RESOURCE> becomes optional:

	OPERATION

	URL

	METHOD

	READ

	<BASE URL>/<RESOURCE:optional>/<uid>

	GET

	CREATE

	<BASE URL>/<RESOURCE:optional>/create/<uid>

	POST

	UPDATE

	<BASE URL>/<RESOURCE:optional>/update/<uid>

	POST

	DELETE

	<BASE URL>/<RESOURCE:optional>/delete/<uid>

	POST

Therefore, the following urls are also valid:

	http://localhost:8080/senaite/@@API/senaite/v1/create/<uid>

	http://localhost:8080/senaite/@@API/senaite/v1/update/<uid>

	http://localhost:8080/senaite/@@API/senaite/v1/delete/<uid>

Users Resource

The API is capable to find SENAITE users, e.g.:

	http://localhost:8080/senaite/@@API/senaite/v1/users

	http://localhost:8080/senaite/@@API/senaite/v1/users/current

	http://localhost:8080/senaite/@@API/senaite/v1/users/<username>

{
 count: 50,
 pagesize: 25,
 items: [
 {
 username: "jordi",
 visible_ids: false,
 linked_contact_uid: "e980f398c233488b96d733a49b73c8b8",
 authenticated: false,
 api_url: "http://localhost:8080/senaite/@@API/senaite/v1/users/jordi",
 roles: [
 "Member",
 "LabManager",
 "Authenticated"
],
 home_page: "",
 description: "",
 wysiwyg_editor: "",
 location: "",
 error_log_update: 0,
 language: "",
 listed: true,
 groups: [
 "AuthenticatedUsers",
 "Clients",
 "LabManagers",
],
 portal_skin: "",
 fullname: "Jordi Puiggené",
 login_time: "2000-01-01T00:00:00",
 email: "jp@naralabs.com",
 ext_editor: false,
 last_login_time: "2000-01-01T00:00:00"
 },
],
 page: 1,
 _runtime: 0.008383989334106445,
 next: "http://localhost:8080/senaite/@@API/senaite/v1/users?b_start=25",
 pages: 2,
 previous: null
}

The results come as well as batches of 25 items per default. It is also possible
to get a higher or lower number of users per batch with the ?limit=n request
parameter, e.g.:

	http://localhost:8080/senaite/@@API/senaite/v1/users?limit=1

Note

This route lists all users for authenticated users only.

The username current is reserved to fetch the current logged in user:

	http://localhost:8080/senaite/@@API/senaite/v1/users/current

Overview

	Resource

	Action

	Description

	users

	<username>,current

	Resource for SENAITE Users

	auth

	
	Basic Authentication

	login

	
	Login with __ac_name and __ac_password

	logout

	
	De-authenticate

Catalogs Resource

senaite.jsonapi is capable to retrieve information about the catalogs
registered in the system, as well as the indexes and metadata fields (schema)
they contain:

	http://localhost:8080/senaite/@@API/senaite/v1/catalogs

	http://localhost:8080/senaite/@@API/senaite/v1/catalogs/<catalog_id>

For each catalog, the following information is provided:

	id: the unique identifier of the catalog

	indexes: the list of indexes the catalog contains (used for searches)

	schema: the list of metadata fields the catalog contains

	portal_types: types that are indexed in this catalog

Example:

	http://localhost:8080/senaite/@@API/senaite/v1/catalogs/bika_catalog

{
 _runtime: 0.0061838626861572266,
 id: "bika_catalog",
 schema: [
 "Created",
 "Description",
 "Title",
 "Type",
 "UID",
 "creator",
 ...
],
 portal_types: [
 "Batch",
 "ReferenceSample",
],
 indexes: [
 "BatchDate",
 "Creator",
 "Description",
 "Title",
 "Type",
 "UID",
 ...
]
}

Note

the indexes of a catalog can either be used as filters for
searching results and as criteria for sorting the results.

Note

schema fields are the keys of the values senaite.jsonapi will
display in a search query for a given resource and catalog in
accordance with the two step architecture strategy explained in
Concept.

Search Resource

The search route omits the portal type and is therefore capable to search for
any content type within the portal that is indexed in portal_type catalog.

The search route accepts all available indexes which are defined in the portal
catalog tool, e.g.:

	http://localhost:8080/senaite/@@API/senaite/v1/search

Returns all contents indexed in portal_catalog.

	http://localhost:8080/senaite/@@API/senaite/v1/search?id=test

Returns contents that match with the given value of the id parameter.

By default, Plone [http://plone.org] objects are stored in a generalist catalog, named
portal_catalog. SENAITE LIMS is built on top of Plone and also makes use of
this generalist catalog, but not all objects are stored in this catalog.
Rather, SENAITE LIMS follows a multi-catalog approach given the heterogeneity of
object types it contains, with different requirements in terms of indexes for
searches. The immediate benefit is that system becomes more performant, but at
a cost: the user has to know the catalog to search against.

Searches by catalog

You can check the catalogs registered in the system and locate the portal type
you want to search with the route catalogs, as explained in Catalogs Resource.

Not all catalogs have same indexes, so once you know the catalog to search against,
you might need to check the indexes it contains you are using a supported
parameter for your search.

The following is a catalog-specific search (note the param catalog in the url):

	http://localhost:8080/senaite/@@API/senaite/v1/search?id=WB-00012&catalog=bika_catalog_analysisrequest_listing

Returns the contents indexed with id WB-00012 in the specified catalog. This
catalog only contains objects from type AnalysisRequest (aka Sample), so we
expect this query to return a single item, a Sample:

{
 count: 1,
 pagesize: 25,
 items: [
 {
 getSampleTypeUID: "39cbccd290a64894853d9d28ad297d33",
 getProgress: 40,
 getDueDate: "2020-05-01T16:01:23+02:00",
 getBatchID: "",
 getContactFullName: "Rita Mohale",
 url: "http://localhost:8080/senaite/clients/client-1/WB-00012",
 path: "/senaite/senaite/clients/client-1/WB-00012",
 uid: "19697c28034a4d3a960540b938203b50",
 id: "WB-00012",
 getDateSampled: "2020-04-27T00:00:00+02:00",
 parent_id: "client-1",
 getInternalUse: false,
 api_url: "http://localhost:8080/senaite/@@API/senaite/v1/analysisrequest/19697c28034a4d3a960540b938203b50",
 getClientTitle: "Happy Hills",
 portal_type: "AnalysisRequest",
 ...
 }
],
 page: 1,
 _runtime: 9.699778079986572,
 next: null,
 pages: 1,
 previous: null
}

Note

Remember that senaite.jsonapi follows a two-step strategy on
searches, so only the catalog metadata of the item is displayed unless
you add the parameter &complete=True in the URL.

Searches by index

Search of resources supports the use of indexes as filter criteria. Note that
we’ve used the param id in the above mentioned searches. In fact, id is an
index that is present either in default portal_catalog and in the catalog for
which we’ve done the catalog-specific search.

Remember you can check the indexes available for any given catalog by using the
Catalogs route. For instance:

	http://localhost:8080/senaite/@@API/senaite/v1/search?portal_type=Client

Will return all the objects their value for portal_type index is Client and
that are stored in the default catalog portal_catalog. Obviously, this url
returns exactly the same result as if we were using the route client:

	http://localhost:8080/senaite/@@API/senaite/v1/client

But portal_catalog has other indexes that might be of our interest for
searches:

	http://localhost:8080/senaite/@@API/senaite/v1/search?review_state=inactive

Will return the items, regardless of the type, that are stored in portal_catalog
that are in inactive status.

Searches by index can also be used against other catalogs:

	http://localhost:8080/senaite/@@API/senaite/v1/search?getClientID=HHILLS&bika_catalog_analysisrequest_listing

Will return all the samples assigned to client with id HHILLS. Note this is
not the internal ID of the client object, rather the id assigned manually by
user on Client creation.

We can also combine multiple indexes in our search:

	http://localhost:8080/senaite/@@API/senaite/v1/search?getClientID=HHILLS&review_state=published&catalog=bika_catalog_analysisrequest_listing

Will return the samples assigned to client with id HHILLS their status is
published.

Sorting and limiting results

Results can also be sorted by any index present in the catalog, by using the
sort_on parameter:

	http://localhost:8080/senaite/@@API/senaite/v1/search?getClientID=HHILLS&review_state=published&sort_on=getDateSampled&catalog=bika_catalog_analysisrequest_listing

Will return the samples assigned to client with id HHILLS their status is
published, sorted by date sampled ascending. We can also sort the results
descending with parameter sort_order:

	http://localhost:8080/senaite/@@API/senaite/v1/search?getClientID=HHILLS&review_state=published&sort_on=getDateSampled&sort_order=desc&catalog=bika_catalog_analysisrequest_listing

In addition to sorting, we can also limit the number of results to a given
number:

	http://localhost:8080/senaite/@@API/senaite/v1/search?getClientID=HHILLS&review_state=published&sort_on=getDateSampled&sort_order=desc&limit=10&catalog=bika_catalog_analysisrequest_listing

Will return the first 10 samples that are assigned to a client with id HHILLS,
their status is published, sorted by date sampled descending.

Parameters

	URL Schema

	<BASE URL>/<RESOURCE>?<KEY>=<VALUE>&<KEY>=<VALUE>

All content resources accept to be filtered by request parameters.

	Key

	Value

	Description

	q

	searchterm

	Search the SearchableText index for the given query string

	path

	/physical/path

	Specifiy a physical path to only return results below it.
See how to Query by path [http://docs.plone.org/develop/plone/searching_and_indexing/query.html#query-by-path] in the Plone docs [http://docs.plone.org/develop/plone/searching_and_indexing/query.html#query-by-path] for details.

	depth

	0..n

	Specify the depth of a path query. Only relevant when using
the path parameter.

	catalog

	catalog name

	Search for results against the specified catalog

	limit

	1..n

	Limit the results to the given limit number.
This will return batched results with x pages and n items per page

	sort_on

	catalog index

	Sort the results by the given index

	sort_order

	asc / desc

	Sort ascending or descending (default: ascending)

	sort_limit

	1..n

	Limit the result set to n items.
The portal catalog will only return n items.

	complete

	yes/y/1/True

	Flag to return the full object results immediately.
Bypasses the two step behavior of the API

	children

	yes/y/1/True

	Flag to return the folder contents of a folder below the children key
Only visible if complete flag is true or if an UID is provided

	workflow

	yes/y/1/True

	Flag to include the workflow data below the workflow key

	filedata

	yes/y/1/True

	Flag to include the base64 encoded file

	recent_created

	today, yesterday
this-week, this-month
this-year

	Specify a recent created date range, to find all items created within
this date range until today.
This uses internally ‘range’: ‘min’ query.

	recent_modified

	today, yesterday
this-week, this-month
this-year

	Specify a recent modified date range, to find all items modified within
this date range until today.
This uses internally ‘range’: ‘min’ query.

Response Format

The response format is for all resources the same.

{
 count: 1, // number of found items
 pagesize: 25, // items per page
 items: [// List of all item objexts
 {
 id: "front-page", // item data
 ...
 }
],
 page: 1, // current page
 _runtime: 0.00381, // calculation time to generate the data
 next: null, // URL to the next batch
 pages: 1, // number of total pages
 previous: null // URL to the previous batch
}

	count

	The number of found items – can be more than displayed on one site

	pagesize

	Number of items per page

	items

	List of found items – only catalog brain keys unless you add a
complete=yes parameter to the request or request an URL with an UID at
the end.

	page

	The current page of the batched result set

	_runtime

	The time in milliseconds needed to generate the data

	next

	The URL to the next batch

	pages

	The number of pages in the batch

	previous

	The URL to the previous batch

CRUD

Each content route provider shipped with this package, provides the basic CRUD
Operations functionality to create, read, update and delete the
resource handled, except that the delete operation tries to deactivate the
resource instead of deleting it. The reason is that for traceability reasons,
delete operation is not supported in SENAITE LIMS.

Keep in mind that available operations are strongly bound to permissions, so
the operation will only take place if the user has enough privileges for that
operation and resource status.

Unified API

	URL Schema

	<BASE URL>/<OPERATION>/<uid:optional>

There is a convenient and unified way to fetch the content without knowing the
resource. This unified resource is directly located at the Base URL.

CREATE

The create route will create the content inside the container located at the
given UID.

http://localhost:8080/senaite/@@API/senaite/v1/<RESOURCE:optional>/create/<uid:optional>

The given RESOURCE defines the type of object to create. You can omit this value
and specify the type with portal_type variable in the HTTP POST body. Check
Operations: for more information.

The given optional UID defines the target container. You can omit this UID
and specify all the information in the HTTP POST body.

The following are the POST parameters required for the creation of any type of
object:

	portal_type: The type name of to object to be created (e.g. Client),
Required if <RESOURCE> is omitted in the url.

	parent_path: Physical path of the parent container (e.g. /senaite/clients),
Required if <uid> is omitted in the url.

Note

parent_uid (the UID of the parent container) can be used instead of
parent_path

Additional fields might be required depending on the resource to be created. For
instance, for the creation of a Client object, values for two additional
fields are required: Name and ClientID.

Important

SENAITE.JSONAPI does not allow the creation of objects when:

	the container is the portal root (senaite path)

	the container is senaite’s setup (senaite/bika_setup path)

	the container does not allow the specified portal_type

In such cases, senaite.jsonapi will always return a 401 response.

The examples below show possible variations of a HTTP POST body sent to the
JSON API with the header Content-Type: application/json set. Remember you
can use the Advanced Rest Client [https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo] Application to send POST requests. See
Installation for details.

Example: Client creation

Request URL:

http://localhost:8080/senaite/@@API/senaite/v1/create

Body Content type (application/json):

{
 "portal_type": "Client",
 "title": "Test Client",
 "ClientID": "TEST-01",
 "parent_path": "/senaite/clients"
}

Example: Sample Type creation

Request URL:

http://localhost:8080/senaite/@@API/senaite/v1/create

Body Content type (application/json):

{
 "portal_type": "SampleType",
 "title": "Test Sample Type",
 "description": "This is a new Sample Type",
 "Hazardous": false,
 "Prefix": "TST",
 "MinimumVolume": "10 mL",
 "RetentionPeriod": {
 "days": 5,
 "hours": 0,
 "minutes": 0
 },
 "parent_path": "/senaite/bika_setup/bika_sampletypes"
}

Example: Sample Creation

Request URL:

http://localhost:8080/senaite/@@API/senaite/v1/AnalysisRequest/create/<client_uid>

Body Content type (application/json):

{
 "Contact": <client_contact_uid>,
 "SampleType": <sample_type_uid>,
 "DateSampled": "2020-03-05 14:21:20",
 "Template": <ar_template_uid>,
}

where:

	<client_uid> is the UID of the Client

	<client_contact_uid> is the UID of a Contact from the Client

	<sample_type_uid> is the UID of the Sample Type

	<ar_template_uid> is the UID of the Sample Template

Note

In this example, the RESOURCE (AnalysisRequest) has been defined in
the url, as well as the parent container. This is also supported, as
explained in Operations.
Remember that in SENAITE LIMS, the portal type that represents samples
is AnalysisRequest.

READ

The read route does not exist, use the base url to retrieve a content by uid,
as explained in Operations. E.g.:

http://localhost:8080/senaite/@@API/senaite/v1/<uid>

Please, refer to Search Resource section to learn how to search objects.

UPDATE

The update route will update the content located at the given UID.

http://localhost:8080/senaite/@@API/senaite/v1/update/<uid:optional>

The given optional UID defines the object to update. You can omit this UID and
specify all the information in the HTTP POST body by using either:

	path parameter, as the physical path to the object, or

	uid parameter, as the UID of the object

Alternatively, you can use id and parent_path parameters with the values
from the parent container as well.

Important

SENAITE.JSONAPI does not allow the update of objects when:

	the container is the portal root (senaite path)

	the container is senaite’s setup (senaite/bika_setup path)

In such cases, senaite.jsonapi will always return a 401 response.

The update route can also be used to perform transitions by using the keyword
transition in the HTTP POST body.

The examples below show possible variations of a HTTP POST body sent to the
JSON API with the header Content-Type: application/json set. Remember you
can use the Advanced Rest Client [https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo] Application to send POST requests. See
Installation for details.

Example

Given this Request URL:

http://localhost:8080/senaite/@@API/senaite/v1/update

the following POSTs are equivalent, all them update the “Priority” of sample
DBS-00012 to 2:

{
 "path": "/senaite/clients/client-1/DBS-00012",
 "Priority": 2,
}

{
 "uid": <uid_of_sample_DBS-00012>,
 "Priority": 2,
}

{
 "id": "DBS-00012",
 "parent_path": "/senaite/clients/client-1",
 "Priority": 2,
}

Using the same URL with this HTTP POST body:

{
 "uid": <uid_of_sample_DBS-00012>,
 "Priority": 2,
 "transition": "receive"
}

will update the “Priority” field of the sample to 2 and will perform the
transition “receive” to the Sample with id DBS-00012. This transition will
only take place if the sample is in a suitable status and the user has enough
privileges for the transition to take place.

DELETE

The delete route will deactivate the content located at the given UID.

http://localhost:8080/senaite/@@API/senaite/v1/delete/<uid:optional>

The given optional UID defines the object to deactivate. You can omit this UID
and specify all the information in the HTTP POST body.

Example

Deactivate an object by its physical path:

http://localhost:8080/senaite/@@API/senaite/v1/delete?path=/senaite/clients/client-1

Or you can specify the parent path and the id of the object

http://localhost:8080/Plone/@@API/plone/api/1.0/delete?parent_path=/senaite/clients&id=client-1

Or you can specify these information in the request body:

{
 uid: "<object_uid>"
}

Customizing

This package is built to be extended. You can either use the Zope Component
Architecture and provide an specific Adapter to control what is being returned
by the API or you simply write your own route provider.

This section will show how to build a custom route provider for an example
content type. It will also show how to write and register a custom data adapter
for this content type. It is even possible to customize how the fields of a
specific content type can be accessed or modified.

Adding a custom route provider

Each route provider shipped with this package, provides the basic CRUD
functionality to get, create, delete and update the resource handled.

The same functionality can be used to provide this behavior for custom content
types. All necessary functions are located in the api module within this
package.

CRUD
from senaite.jsonapi.api import get_batched
from senaite.jsonapi.api import create_items
from senaite.jsonapi.api import update_items
from senaite.jsonapi.api import delete_items

route dispatcher
from senaite.jsonapi import add_route

GET
@add_route("/todos", "todos", methods=["GET"])
@add_route("/todos/<string:uid>", "todos", methods=["GET"])
def get(context, request, uid=None):
 """ get all todos
 """
 return get_batched("Todo", uid=uid, endpoint="todo")

You can also specify an own query and pass it to the get_batched function of
the api. This gives full control over the executed query on the catalog:

@add_route("/mytodos", "mytodos", methods=["GET"])
def mytodos(context, request):
 """ Returns all my todos
 """
 myself =
 query = {"portal_type": "Todo",
 "creator": api.get_current_user().getId() }
 return get_batched(query=query)

Note

Other keywords (except uid) are ignored, if the query keyword is
detected.

The upper example registers a function named get with the add_route
decorator. This ensures that this function gets called when the /todos
route is called, e.g. http://localhost:8080/senaite/@@API/senaite/v1/todos.

The second argument of the decorator is the endpoint, which is kind of the
registration key for our function. The last argument is the methods we would
like to handle here. In this case we’re only interested in GET requests.

All route providers get always the context and the request as the first two
arguments. The uid keyword argument is passed in, when a UID was appended to
the URL, e.g http://localhost:8080/senaite/@@API/v1/senaite/todo/a3f3f9efd0b4df190d16ea63d.

The get_batched function we call inside our function will do all the heavy
lifting for us. We simply need to pass in the portal_type as the first
argument, the UID and the endpoint.

To be able to create, update and delete our Todo content type, it is
necessary to provide the following functions as well. The behavior is analogue
to the upper example but as there is no need for batching, the functions return
a Python <list> instead of a complete mapping as above.

ACTIONS = "create,update,delete,cut,copy,paste"

http://werkzeug.pocoo.org/docs/0.11/routing/#builtin-converters
http://werkzeug.pocoo.org/docs/0.11/routing/#custom-converters
@route("/<any(" + ACTIONS + "):action>",
 "senaite.jsonapi.v1.action", methods=["POST"])
@route("/<any(" + ACTIONS + "):action>/<string(maxlength=32):uid>",
 "senaite.jsonapi.v1.action", methods=["POST"])
@route("/<string:resource>/<any(" + ACTIONS + "):action>",
 "senaite.jsonapi.v1.action", methods=["POST"])
@route("/<string:resource>/<any(" + ACTIONS + "):action>/<string(maxlength=32):uid>",
 "senaite.jsonapi.v1.action", methods=["POST"])
def action(context, request, action=None, resource=None, uid=None):
 """Various HTTP POST actions

 Case 1: <action>
 <site_id>/@@API/v1/senaite/<action>

 Case 2: <action>/<uid>
 -> The actions (update, delete) will performed on the object identified by <uid>
 -> The action (create) will use the <uid> as the parent folder
 <site_id>/@@API/v1/senaite/<action>/<uid>

 Case 3: <resource>/<action>
 -> The "target" object will be located by a location given in the request body (uid, path, parent_path + id)
 -> The actions (update, delete) will performed on the target object
 -> The action (create) will use the target object as the container
 <site_id>/@@API/v1/senaite/<resource>/<action>

 Case 4: <resource>/<action>/<uid>
 -> The actions (update, delete) will performed on the object identified by <uid>
 -> The action (create) will use the <uid> as the parent folder
 <Plonesite>/@@API/plone/api/1.0/<resource>/<action>
 """

 # Fetch and call the action function of the API
 func_name = "{}_items".format(action)
 action_func = getattr(api, func_name, None)
 if action_func is None:
 api.fail(500, "API has no member named '{}'".format(func_name))

 portal_type = api.resource_to_portal_type(resource)
 items = action_func(portal_type=portal_type, uid=uid)

 return {
 "count": len(items),
 "items": items,
 "url": api.url_for("senaite.jsonapi.v1.action", action=action),
 }

Adding a custom data adapter

The data returned by the API for each content type is extracted by the IInfo
Adapter. This Adapter simply extracts all field values from the content.

To customize how the data is extracted from the content, you have to register an
adapter for a more specific interface on the content.

This adapter has to implement the IInfo interface.

from senaite.jsonapi.interfaces import IInfo
from zope import interface

class TodoAdapter(object):
 """ A custom adapter for Todo content types
 """
 interface.implements(IInfo)

 def __init__(self, context):
 self.context = context

 def to_dict(self):
 return {} # whatever data you need

 def __call__(self):
 # just implement it like this, don't ask x_X
 return self.to_dict()

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for my custom content type -->
 <adapter
 for="my.addon.interfaces.ITodo"
 factory=".adapters.TodoAdapter"
 />

</configure>

Adding a custom data manager

The data sent by the API for each content type is set by the IDataManager
Adapter. This Adapter has a simple interface:

class IDataManager(interface.Interface):
 """ Field Interface
 """

 def get(name):
 """ Get the value of the named field with
 """

 def set(name, value):
 """ Set the value of the named field
 """

 def json_data(name, default=None):
 """ Get a JSON compatible structure from the value
 """

To customize how the data is set to each field of the content, you have to
register an adapter for a more specific interface on the content.
This adapter has to implement the IDataManager interface.

Note

The json_data function is called by the Data Provider Adapter
(IInfo) to get a JSON compatible return Value, e.g.:
DateTime(‘2017/05/14 14:46:18.746800 GMT+2’) -> “2017-05-14T14:46:18+02:00”

Important

Please be aware that you have to implement security for field
level access on your own.

from persistent.dict import PersistentDict
from senaite.jsonapi.interfaces import IDataManager
from zope import interface
from zope.annotation import IAnnotations

class TodoDataManager(object):
 """ A custom data manager for Todo content types
 """
 interface.implements(IDataManager)

 def __init__(self, context):
 self.context = context

 @property
 def storage(self):
 return IAnnotations(self.context).setdefault('my.addon.todo', PersistentDict())

 def get(self, name):
 self.storage.get("name")

 def set(self, name, value):
 self.storage["name"] = value

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for my custom content type -->
 <adapter
 for="my.addon.interfaces.ITodo"
 factory=".adapters.TodoDataManager"
 />

</configure>

Adding a custom field manager

The default data managers (IDataManager) defined in this package know how to
set and get the values from fields. But sometimes it might be useful to be
more granular and know how to set and get a value for a specific field.

Therefore, senaite.jsonapi introduces Field Managers (IFieldManager), which
adapt a field.

This Adapter has a simple interface:

class IFieldManager(interface.Interface):
 """A Field Manager is able to set/get the values of a single field.
 """

 def get(instance, **kwargs):
 """Get the value of the field
 """

 def set(instance, value, **kwargs):
 """Set the value of the field
 """

 def json_data(instance, default=None):
 """Get a JSON compatible structure from the value
 """

To customize how the data is set to each field of the content, you have to
register a more specific adapter to a field.

This adapter has to implement then the IFieldManager interface.

Note

The json_data function is called by the Data Manager Adapter
(IDataManager) to get a JSON compatible return Value, e.g.:
DateTime(‘2017/05/14 14:46:18.746800 GMT+2’) -> “2017-05-14T14:46:18+02:00”

Note

The json_data method is defined on context level (IDataManger) as
well as on field level (IFieldManager). This is to handle objects
w/o fields, e.g. Catalog Brains, Portal Object etc. and Objects which
contain fields and want to delegate the JSON representation to the
field.

Important

Please be aware that you have to implement security for field
level access on your own.

class DateTimeFieldManager(ATFieldManager):
 """Adapter to get/set the value of DateTime Fields
 """
 interface.implements(IFieldManager)

 def set(self, instance, value, **kw):
 """Converts the value into a DateTime object before setting.
 """
 try:
 value = DateTime(value)
 except SyntaxError:
 logger.warn("Value '{}' is not a valid DateTime string"
 .format(value))
 return False

 self._set(instance, value, **kw)

 def json_data(self, instance, default=None):
 """Get a JSON compatible value
 """
 value = self.get(instance)
 return api.to_iso_date(value) or default

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for AT DateTime Field -->
 <adapter
 for="Products.Archetypes.interfaces.field.IDateTimeField"
 factory=".fieldmanagers.DateTimeFieldManager"
 />

</configure>

Adding a custom catalog tool

Note

Remember senaite.jsonapi searches against portal_catalog by default,
but you can search against other catalogs by using the catalog parameter
in the search query. See _Search_Resource for further information.

All search is done through a catalog adapter. This adapter has to provide at
least a search method. The others are optional, but recommended.

class ICatalog(interface.Interface):
 """ Catalog interface
 """

 def search(query):
 """ search the catalog and return the results
 """

 def get_catalog():
 """ get the used catalog tool
 """

 def get_indexes():
 """ get all indexes managed by this catalog
 """

 def get_index(name):
 """ get an index by name
 """

 def to_index_value(value, index):
 """ Convert the value for a given index
 """

To customize the catalog tool to get full control of the search, you have to
register an catalog adapter for a more specific interface on the portal. This
adapter has to implement the ICatalog interface.

from senaite.jsonapi.interfaces import ICatalog
from senaite.jsonapi import api
from zope import interface

class MyCatalog(object):
 """My Catalog adapter
 """
 interface.implements(ICatalog)

 def __init__(self, context):
 self._catalog = api.get_tool("my_catalog")

 def search(self, query):
 """search the catalog
 """
 catalog = self.get_catalog()
 return catalog(query)

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for a custom catalog adapter -->
 <adapter
 for=".interfaces.ICustomPortalMarkerInterface"
 factory=".catalog.MyCatalog"
 />

</configure>

Adding a custom catalog query adapter

Note

Remember senaite.jsonapi searches against portal_catalog by default,
but you can search against other catalogs by using the catalog parameter
in the search query. See _Search_Resource for further information.

All search is done through a catalog adapter. The ICatalogQuery adapter
provides a suitable query usable for the ICatalog adapter. It should at least
provide a make_query method.

class ICatalogQuery(interface.Interface):
 """ Catalog query interface
 """

 def make_query(**kw):
 """ create a new query or augment an given query
 """

To customize a custom catalog tool to perform a search, you have to
register an catalog adapter for a more specific interface on the portal.
This adapter has to implement the ICatalog interface.

from senaite.jsonapi.interfaces import ICatalogQuery
from zope import interface

class MyCatalogQuery(object):
 """MyCatalog query adapter
 """
 interface.implements(ICatalogQuery)

 def __init__(self, catalog):
 self.catalog = catalog

 def make_query(self, **kw):
 """create a query suitable for the catalog
 """
 query = {"sort_on": "created", "sort_order": "descending"}
 query.update(kw)
 return query

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for a custom query adapter -->
 <adapter
 for=".interface.ICustomCatalogInterface"
 factory=".catalog.MyCatalogQuery"
 />

</configure>

Adding an adapter for create operation

SENAITE JSONAPI is portal_type-naive. This means that this add-on delegates
the responsibility of creation operation to the underlying add-on where the given
portal type is registered. This is true in most cases, except when:

	the container is the portal root (senaite path)

	the container is senaite’s setup (senaite/bika_setup path)

	the container does not allow the specified portal_type

For the cases above, senaite.jsonapi will always return a 401 response.

Sometimes, one might want to handle the creation of a given object differently,
either because:

	you want a portal type to never be created through senaite.jsonapi

	you want a portal type to only be created in some specific circumstances

	you want to add some additional logic within the creation process

	etc.

SENAITE.JSONAPI provides the ICreate interface that allows you to handle
the create operation with more granularity. An Adapter of this interface is
initialized with the container object to be created. This interface provides
the following signatures:

class ICreate(interface.Interface):
 """Interface to handle creation of objects
 """

 def is_creation_allowed(self):
 """Returns whether the creation of this portal type for the given
 container is allowed
 """

 def is_creation_delegated(self):
 """Return whether the creation of this portal type has to be delegated
 to this adapter
 """

 def create_object(self, **data):
 """Creates an object
 """

Allow/disallow the creation of a content type

For instance, say you don’t want to allow the creation of objects from type
Todo through the senaite.jsonapi:

from senaite.jsonapi.interfaces import ICreate
from zope import interface

class TodoCreateAdapter(object):
 """Custom adapter for the creation of Todo type
 """
 interface.implements(ICreate)

 def __init__(self, container):
 self.container = container

 def is_creation_allowed(self):
 """Returns whether the creation of the portal_type is allowed
 """
 return False

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for a creation custom adapter -->
 <adapter
 name="Todo"
 factory=".TodoCreateAdapter"
 provides="senaite.jsonapi.interfaces.ICreate"
 for="*" />

</configure>

Note

This is a “named” adapter in which the name is the portal type.

Note that if you wanted this Todo type to be created through senaite.jsonapi,
except inside the container Client, you could do so by registering the adapter
for IClient type only:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for custom creation of Todo -->
 <adapter
 name="Todo"
 factory=".TodoCreateAdapter"
 provides="senaite.jsonapi.interfaces.ICreate"
 for="bika.lims.interfaces.IClient" />

</configure>

Note

We’ve used here a custom Todo type, but you can use this approach for any
type registered in the system, being it from senaite.core (e.g. Client’,
`SampleType, etc.) or from any other add-on.

Custom creation of a content type

As we’ve explained before, you might want to have full control on the creation
of a given portal type because you have to add additional logic. You can use
the same adapter as before:

from Products.CMFPlone.utils import _createObjectByType
from senaite.jsonapi.interfaces import ICreate
from zope import interface

class TodoCreateAdapter(object):
 """Custom adapter for the creation of Todo type
 """
 interface.implements(ICreate)

 def __init__(self, container):
 self.container = container

 def is_creation_allowed(self):
 """Returns whether the creation of the portal_type is allowed
 """
 return True

 def is_creation_delegated(self):
 """Returns whether the creation of this portal type has to be
 delegated to this adapter
 """
 return True

 def create_object(self, **data):
 """Creates an object
 """
 obj = _createObjectByType("Todo", self.container, tmpID())
 obj.edit(**data)
 obj.unmarkCreationFlag()
 obj.reindexObject()
 return obj

With this example, senaite.jsonapi will not follow the default procedure of
creation, but delegate the operation to the function create_object of this
adapter. Note the creation will only be delegated when the function
is_creation_delegated returns True.

Adding an adapter for update operation

Sometimes, one might want to handle the update of a given object differently,
either because:

	you want an object to never be updated through senaite.jsonapi

	you want an object to only be updated in some specific circumstances

	you want to add some additional logic within the update process

	etc.

Adding a custom data manager or Adding a custom field manager allows to achieve these goals
partially, cause their scope is at field level. If you need full control over
the update process, you can also create an adapter implementing IUpdate
interface. This interface allows you to handle the update operation by your
own. This interface provides the folllowing signatures:

class IUpdate(interface.Interface):
 """Interface to handle update of objects
 """

 def is_update_allowed(self):
 """Returns whether the update of the object is allowed
 """

 def update_object(self, **data):
 """Updates the object
 """

Allow/disallow to update an object

For instance, say you don’t want to allow the update of objects from type
Todo through the senaite.jsonapi:

from senaite.jsonapi.interfaces import IUpdate
from zope import interface

class TodoUpdateAdapter(object):
 """Custom adapter for the update of objects from Todo type
 """
 interface.implements(IUpdate)

 def __init__(self, context):
 self.context = context

 def is_update_allowed(self):
 """Returns whether the update of the object is allowed
 """
 return False

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for custom update -->
 <adapter
 factory=".TodoUpdateAdapter"
 provides="senaite.jsonapi.interfaces.IUpdate"
 for="my.addon.interfaces.ITodo" />

</configure>

Note

This adapter is initialized with context, the object to be updated.

Note

We’ve used here a custom Todo type, but you can use this approach for any
type registered in the system, being it from senaite.core (e.g. Client’,
`SampleType, etc.) or from any other add-on.

Custom update of an object

Imagine that besides updating your object, you want to add a Remarks at the
same time. You can use the same adapter as before:

from senaite.jsonapi.interfaces import IUpdate
from zope import interface

class TodoUpdateAdapter(object):
 """Custom adapter for the update of objects from Todo type
 """
 interface.implements(IUpdate)

 def __init__(self, context):
 self.context = context

 def is_update_allowed(self):
 """Returns whether the update of the object is allowed
 """
 return True

 def update_object(self, **data):
 """Updates the object
 """
 self.context.setRemarks("Updated through json.api")
 self.context.edit(**data)
 self.context.reindexObject()

With this example, senaite.jsonapi will not follow the default procedure of
update, but delegate the operation to the function update_object of this
adapter.

PUSH endpoint. Custom jobs

Sometimes is useful to have and endpoint to allow the execution of custom logic
without bothering about creating views, handing JSON, etc. This add-on provides
and end-point push that acts as a gateway for custom processes or actions.

Imagine you want to ask SENAITE to send an email to all contacts telling them
that the system won’t be available for maintenance reasons for a while.

Add the following adapter in your add-on:

from bika.lims import api
from bika.lims.api import mail as mailapi
from senaite.jsonapi.interfaces import IPushConsumer
from zope import interface

class EmailNotifier(object):
 """Custom adapter for sending e-mail notifications to contacts
 """
 interface.implements(IPushConsumer)

 def __init__(self, data):
 self.data = data

 def process(self):
 """Send notifications to contacts
 """
 # Get the subject and body to be sent
 subject = data.get("subject")
 message = data.get("message")

 # Get e-mail addresses from all contacts
 emails = self.get_emails()

 # Send the emails
 success = map(lambda e: self.send(e, subject, message), emails)
 return any(success)

 def get_emails(self):
 """Returns the emails from all registered contacts
 """
 query = {"portal_type": ["Contact", "LabContact"]}
 contacts = map(api.get_object, api.search(query, "portal_catalog"))
 emails = map(lambda c: c.getEmailAddress(), contacts)
 emails = filter(None, emails)
 return list(OrderedDict.fromkeys(uids))

 def send(self, email, subject, body):
 """Creates and sends an email message
 """
 lab = api.get_setup().laboratory
 from_addr = lab.getEmailAddress()
 msg = mailapi.compose(from_addr, email, subject, body)
 return mailapi.send_email(mime_msg)

And register the adapter in your configure.zcml as follows:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for processing email notifications -->
 <adapter
 name="my.addon.push.emailnotifier"
 factory=".EmailNotifier"
 provides="senaite.jsonapi.interfaces.IPushConsumer"
 for="*" />

</configure>

You can now make use of push end-point to send messages:

http://localhost:8080/senaite/@@API/senaite/v1/push

Body Content type (application/json):

{
 "consumer": "my.addon.push.emailnotifier",
 "subject": "Sheduled LIMS maintenance",
 "message": "System will not be available from 16:00 to 18:00",
}

Note the field consumer is mandatory and it’s value must match with the name
of the adapter to use to process the job. You can add as many fields as required
by the job processor (consumer).

Doctests

AUTH

Running this test from the buildout directory:

bin/test test_doctests -t auth

Test Setup

Needed Imports:

>>> import transaction
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Login

User can login with a GET:

>>> get("login?__ac_name={}&__ac_password={}".format(TEST_USER_ID, TEST_USER_PASSWORD))
'..."authenticated": true...'

And once logged, auth route does not rise an unauthorized response 401:

>>> get("auth")
'{"_runtime": ...}'

Logout

User can logout easily too:

>>> get("users/logout")
'..."authenticated": false...'

And auth route rises an unauthorized response 401:

>>> get("auth")
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 401: Unauthorized

VERSION

Running this test from the buildout directory:

bin/test test_doctests -t version

Test Setup

Needed Imports:

>>> import transaction
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

Functional Helpers:

>>> def logout():
... browser.open(portal_url + "/logout")
... assert("You are now logged out" in browser.contents)

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

JSON API:

>>> api_base_url = portal_url + "/@@API/senaite/v1"

Authenticated user

The version route should be visible to authenticated users:

>>> browser.open(api_base_url + "/version")
>>> browser.contents
'{"url": "http://nohost/plone/@@API/senaite/v1/version", "date": "...", "version": ..., "_runtime": ...}'

Unauthenticated user

Log out:

>>> logout()

The version route should be visible to unauthenticated users too:

>>> browser.open(api_base_url + "/version")
>>> browser.contents
'{"url": "http://nohost/plone/@@API/senaite/v1/version", "date": "...", "version": ..., "_runtime": ...}'

USERS

Running this test from the buildout directory:

bin/test test_doctests -t users

Test Setup

Needed Imports:

>>> import json
>>> import transaction
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Get all users

The API is capable to find SENAITE users:

>>> response = get("users")
>>> data = json.loads(response)
>>> items = data.get("items")
>>> sorted(map(lambda it: it["username"], items))
[u'test-user', u'test_analyst_0',...u'test_labmanager_1']

And for each user, the roles and groups are displayed:

>>> analyst = filter(lambda it: it["username"] == "test_analyst_0", items)[0]
>>> sorted(analyst.get("roles"))
[u'Analyst', u'Authenticated', u'Member']

>>> sorted(analyst.get("groups"))
[u'Analysts', u'AuthenticatedUsers']

As well as other properties:

>>> sorted(analyst.keys())
[u'api_url', u'authenticated', u'description', u'email', ...]

Get current user

Current user can also be retrieved easily:

>>> response = get("users/current")
>>> data = json.loads(response)
>>> data.get("count")
1
>>> current = data.get("items")[0]
>>> current.get("username")
u'test-user'

and includes all properties too:

>>> sorted(current.keys())
[u'api_url', u'authenticated', u'description', u'email',...u'groups',...u'roles'...]

Get a single user

A single user can be retrieved too:

>>> get("users/test_analyst_0")
'..."username": "test_analyst_0"...'

CATALOGS

Running this test from the buildout directory:

bin/test test_doctests -t catalogs

Test Setup

Needed Imports:

>>> import json
>>> import transaction
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Get all catalogs

senaite.jsonapi is capable to retrieve information about the catalogs
registered in the system:

>>> response = get("catalogs")
>>> data = json.loads(response)
>>> items = data.get("items")
>>> catalog_ids = map(lambda cat: cat["id"], items)
>>> sorted(catalog_ids)
[u'auditlog_catalog', ..., u'portal_catalog']

Catalogs for internal use are not included though:

>>> "uid_catalog" in catalog_ids
False

>>> "reference_catalog" in catalog_ids
False

For each catalog, indexes, schema fields and allowed portal types are listed:

>>> cat = filter(lambda it: it["id"]=="portal_catalog", items)[0]
>>> sorted(cat.get("indexes"))
[u'Analyst', u'Creator', u'Date', ...]

>>> sorted(cat.get("schema"))
[u'Analyst', u'CreationDate', u'Creator',...]

>>> sorted(cat.get("portal_types"))
[u'ARReport', u'ARTemplate', u'ARTemplates',...]

Get a single catalog

A single catalog can also be retrieved by it’s id:

>>> response = get("catalogs/portal_catalog")
>>> cat = json.loads(response)
>>> sorted(cat.get("indexes"))
[u'Analyst', u'Creator', u'Date', ...]

>>> sorted(cat.get("schema"))
[u'Analyst', u'CreationDate', u'Creator',...]

>>> sorted(cat.get("portal_types"))
[u'ARReport', u'ARTemplate', u'ARTemplates',...]

SEARCH

Running this test from the buildout directory:

bin/test test_doctests -t search

Test Setup

Needed Imports:

>>> import json
>>> import transaction

>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

>>> from bika.lims import api

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

>>> def get_count(response):
... data = json.loads(response)
... return data.get("count")

>>> def get_items_ids(response, sort=True):
... data = json.loads(response)
... items = data.get("items")
... items = map(lambda it: it["id"], items)
... if sort:
... return sorted(items)
... return items

>>> def init_data():
... api.create(portal.clients, "Client", title="Happy Hills", ClientID="HH")
... api.create(portal.clients, "Client", title="ACME", ClientID="AC")
... api.create(portal.clients, "Client", title="Fill the gap", ClientID="FG")
... api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
... api.create(setup.bika_sampletypes, "SampleType", title="Dust", Prefix="D")
... transaction.commit()

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> setup = api.get_setup()
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])

Initialize the instance with some objects for testing:

>>> init_data()

Basic search

We can directly search by resource:

>>> response = get("client")
>>> get_count(response)
3
>>> get_items_ids(response)
[u'client-1', u'client-2', u'client-3']

We can also add search criteria as well:

>>> response = get("client?id=client-1")
>>> get_count(response)
1
>>> get_items_ids(response)
[u'client-1']

>>> response = get("client?getName=ACME")
>>> get_count(response)
1
>>> get_items_ids(response)
[u'client-2']

Sort and limit

We can use sort and limit too:

>>> response = get("client?sort_on=id&sort_order=asc")
>>> get_items_ids(response, sort=False)
[u'client-1', u'client-2', u'client-3']

>>> response = get("client?sort_on=id&sort_order=desc")
>>> get_items_ids(response, sort=False)
[u'client-3', u'client-2', u'client-1']

>>> response = get("client?sort_on=id&sort_order=desc&limit=2")
>>> get_items_ids(response, sort=False)
[u'client-3', u'client-2']

Search without resource

We can also omit the resource and search directly by portal_type:

>>> response = get("search?portal_type=Client")
>>> get_items_ids(response)
[u'client-1', u'client-2', u'client-3']

Additional search criteria and sorting works as well:

>>> response = get("search?portal_type=Client&getName=ACME")
>>> get_items_ids(response)
[u'client-2']

>>> response = get("search?portal_type=Client&sort_on=id&sort_order=desc&limit=2")
>>> get_items_ids(response, sort=False)
[u'client-3', u'client-2']

Catalog search

We can specify the catalog to use in searches. Sample Types are stored in both
portal_catalog and setup_catalog:

>>> response = get("sampletype")
>>> get_items_ids(response)
[u'sampletype-1', u'sampletype-2']

>>> response = get("sampletype?catalog=portal_catalog")
>>> get_items_ids(response)
[u'sampletype-1', u'sampletype-2']

>>> response = get("sampletype?catalog=bika_setup_catalog")
>>> get_items_ids(response)
[u'sampletype-1', u'sampletype-2']

But Sample Types are not stored in “bika_catalog”:

>>> response = get("sampletype?catalog=bika_catalog")
>>> get_items_ids(response)
[]

CREATE

Running this test from the buildout directory:

bin/test test_doctests -t create

Test Setup

Needed Imports:

>>> import json
>>> import transaction
>>> import urllib
>>> from DateTime import DateTime
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

>>> from bika.lims import api

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

>>> def post(url, data):
... url = "{}/{}".format(api_url, url)
... browser.post(url, urllib.urlencode(data, doseq=True))
... return browser.contents

>>> def create(data):
... response = post("create", data)
... assert("items" in response)
... response = json.loads(response)
... items = response.get("items")
... assert(len(items)==1)
... item = response.get("items")[0]
... assert("uid" in item)
... return api.get_object(item["uid"])

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> setup = api.get_setup()
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create with resource

We can create an object by providing the resource and the parent uid directly
in the request:

>>> clients = portal.clients
>>> clients_uid = api.get_uid(clients)
>>> url = "client/create/{}".format(clients_uid)
>>> data = {"title": "Test client 1",
... "ClientID": "TC1"}
>>> post(url, data)
'...clients/client-1"...'

We can also omit the parent uid while defining the resource, but passing the
uid of the container via post:

>>> data = {"title": "Test client 2",
... "ClientID": "TC2",
... "parent_uid": clients_uid}
>>> post("client/create", data)
'...clients/client-2"...'

We can use parent_path instead of parent_uid:

>>> data = {"title": "Test client 3",
... "ClientID": "TC3",
... "parent_path": api.get_path(clients)}
>>> post("client/create", data)
'...clients/client-3"...'

Create without resource

Or we can create an object without the resource, but with the parent uid and
defining the portal_type via post:

>>> url = "create/{}".format(clients_uid)
>>> data = {"title": "Test client 4",
... "ClientID": "TC4",
... "portal_type": "Client"}
>>> post(url, data)
'...clients/client-4"...'

Create via post only

We can omit both the resource and container uid and pass everything via post:

>>> data = {"title": "Test client 5",
... "ClientID": "TC5",
... "portal_type": "Client",
... "parent_path": api.get_path(clients)}
>>> post("create", data)
'...clients/client-5"...'

>>> data = {"title": "Test client 6",
... "ClientID": "TC6",
... "portal_type": "Client",
... "parent_uid": clients_uid}
>>> post("create", data)
'...clients/client-6"...'

If we do a search now for clients, we will get all them:

>>> output = get("client")
>>> output = json.loads(output)
>>> items = output.get("items")
>>> items = map(lambda it: it.get("getClientID"), items)
>>> sorted(items)
[u'TC1', u'TC2', u'TC3', u'TC4', u'TC5', u'TC6']

Required fields

System will fail with a 400 error when trying to create an object without a
required attribute:

>>> data = {"portal_type": "SampleType",
... "parent_path": api.get_path(setup.bika_sampletypes),
... "title": "Fresh Egg",
... "Prefix": "FE"}
>>> post("create", data)
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 400: Bad Request

Create a Client

>>> data = {"portal_type": "Client",
... "parent_path": api.get_path(clients),
... "title": "Omelette corp",
... "ClientID": "EC"}
>>> client = create(data)
>>> client.getClientID()
'EC'
>>> api.get_parent(client)
<ClientFolder at /plone/clients>

Create a Client Contact

>>> data = {"portal_type": "Contact",
... "parent_path": api.get_path(client),
... "Firstname": "Proud",
... "Surname": "Hen"}
>>> contact = create(data)
>>> contact.getFullname()
'Proud Hen'
>>> api.get_parent(contact)
<Client at /plone/clients/client-7>

Create a Sample Type

>>> data = {"portal_type": "SampleType",
... "parent_path": api.get_path(setup.bika_sampletypes),
... "title": "Fresh Egg",
... "MinimumVolume": "10 gr",
... "Prefix": "FE"}
>>> sample_type = create(data)
>>> sample_type.Title()
'Fresh Egg'
>>> sample_type.getPrefix()
'FE'
>>> api.get_parent(sample_type)
<SampleTypes at /plone/bika_setup/bika_sampletypes>

Create a Laboratory Contact

>>> data = {"portal_type": "LabContact",
... "parent_path": api.get_path(setup.bika_labcontacts),
... "Firstname": "Lab",
... "Surname": "Chicken"}
>>> lab_contact = create(data)
>>> lab_contact.getFullname()
'Lab Chicken'
>>> api.get_parent(lab_contact)
<LabContacts at /plone/bika_setup/bika_labcontacts>

Create a Department

>>> data = {"portal_type": "Department",
... "parent_path": api.get_path(setup.bika_departments),
... "title": "Microbiology",
... "Manager": api.get_uid(lab_contact)}
>>> department = create(data)
>>> department.Title()
'Microbiology'
>>> api.get_parent(department)
<Departments at /plone/bika_setup/bika_departments>

Create an Analysis Category

>>> data = {"portal_type": "AnalysisCategory",
... "parent_path": api.get_path(setup.bika_analysiscategories),
... "title": "Microbiology identification",
... "Department": api.get_uid(department)}
>>> category = create(data)
>>> category.Title()
'Microbiology identification'
>>> api.get_parent(category)
<AnalysisCategories at /plone/bika_setup/bika_analysiscategories>
>>> category.getDepartment()
<Department at /plone/bika_setup/bika_departments/department-1>

Create an Analysis Service

>>> data = {"portal_type": "AnalysisService",
... "parent_path": api.get_path(setup.bika_analysisservices),
... "title": "Salmonella",
... "Keyword": "Sal",
... "ScientificName": True,
... "Price": 15,
... "Category": api.get_uid(category),
... "Accredited": True}
>>> sal = create(data)
>>> sal.Title()
'Salmonella'
>>> sal.getKeyword()
'Sal'
>>> sal.getScientificName()
True
>>> sal.getAccredited()
True
>>> sal.getCategory()
<AnalysisCategory at /plone/bika_setup/bika_analysiscategories/analysiscategory-1>

>>> data = {"portal_type": "AnalysisService",
... "parent_path": api.get_path(setup.bika_analysisservices),
... "title": "Escherichia coli",
... "Keyword": "Ecoli",
... "ScientificName": True,
... "Price": 15,
... "Category": api.get_uid(category)}
>>> ecoli = create(data)
>>> ecoli.Title()
'Escherichia coli'
>>> ecoli.getKeyword()
'Ecoli'
>>> ecoli.getScientificName()
True
>>> ecoli.getPrice()
'15.00'
>>> ecoli.getCategory()
<AnalysisCategory at /plone/bika_setup/bika_analysiscategories/analysiscategory-1>

Creating a Sample

The creation of a Sample (AnalysisRequest portal type) is handled differently
from the rest of objects, an specific function in senaite.core must be used
instead of the plone’s default creation.

>>> data = {"portal_type": "AnalysisRequest",
... "parent_uid": api.get_uid(client),
... "Contact": api.get_uid(contact),
... "DateSampled": DateTime().ISO8601(),
... "SampleType": api.get_uid(sample_type),
... "Analyses": map(api.get_uid, [sal, ecoli]) }
>>> sample = create(data)
>>> sample
<AnalysisRequest at /plone/clients/client-7/FE-0001>

>>> analyses = sample.getAnalyses(full_objects=True)
>>> sorted(map(lambda an: an.getKeyword(), analyses))
['Ecoli', 'Sal']

>>> sample.getSampleType()
<SampleType at /plone/bika_setup/bika_sampletypes/sampletype-2>

>>> sample.getClient()
<Client at /plone/clients/client-7>

>>> sample.getContact()
<Contact at /plone/clients/client-7/contact-1>

Creation restrictions

We get a 401 error if we try to create an object inside portal root:

>>> data = {"title": "My clients folder",
... "portal_type": "ClientsFolder",
... "parent_path": api.get_path(portal)}
>>> post("create", data)
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 401: Unauthorized

We get a 401 error if we try to create an object inside setup folder:

>>> data = {"title": "My Analysis Categories folder",
... "portal_type": "AnalysisCategories",
... "parent_path": api.get_path(setup)}
>>> post("create", data)
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 401: Unauthorized

We get a 401 error when we try to create an object from a type that is not
allowed by the container:

>>> data = {"title": "My Method",
... "portal_type": "Method",
... "parent_path": api.get_path(clients)}
>>> post("create", data)
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 401: Unauthorized

READ

Running this test from the buildout directory:

bin/test test_doctests -t read

Test Setup

Needed Imports:

>>> import json
>>> import transaction
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

>>> from bika.lims import api

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

>>> def get_count(response):
... data = json.loads(response)
... return data.get("count")

>>> def get_items_ids(response, sort=True):
... data = json.loads(response)
... items = data.get("items")
... items = map(lambda it: it["id"], items)
... if sort:
... return sorted(items)
... return items

>>> def init_data():
... api.create(portal.clients, "Client", title="Happy Hills", ClientID="HH")
... api.create(portal.clients, "Client", title="ACME", ClientID="AC")
... api.create(portal.clients, "Client", title="Fill the gap", ClientID="FG")
... transaction.commit()

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Initialize the instance with some objects for testing:

>>> init_data()

Get resource objects

We can get the objects from a resource type:

>>> response = get("client")
>>> get_count(response)
3
>>> get_items_ids(response)
[u'client-1', u'client-2', u'client-3']

Get by uid

We can directly fetch a given object by it’s UID and resource:

>>> client = api.create(portal.clients, "Client", title="Woow", ClientID="WO")
>>> uid = api.get_uid(client)
>>> transaction.commit()
>>> response = get("client/{}".format(uid))
>>> get_count(response)
1
>>> response
'..."title": "Woow"...'

Even with only the uid:

>>> response = get(uid)
>>> response
'..."title": "Woow"...'

but with no items in the response:

>>> "items" in response
False

>>> sorted(json.loads(response).keys())
[u'AccountName', u'AccountNumber', u'AccountType',...]

UPDATE

Running this test from the buildout directory:

bin/test test_doctests -t update

Test Setup

Needed Imports:

>>> import json
>>> import transaction
>>> import urllib
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD

>>> from bika.lims import api

Functional Helpers:

>>> def get(url):
... browser.open("{}/{}".format(api_url, url))
... return browser.contents

>>> def post(url, data):
... url = "{}/{}".format(api_url, url)
... browser.post(url, urllib.urlencode(data, doseq=True))
... return browser.contents

>>> def get_item_object(response):
... assert("items" in response)
... response = json.loads(response)
... items = response.get("items")
... assert(len(items)==1)
... item = response.get("items")[0]
... assert("uid" in item)
... return api.get_object(item["uid"])

>>> def create(data):
... response = post("create", data)
... return get_item_object(response)

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> setup = api.get_setup()
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Initialize the instance with some objects for testing:

>>> clients = api.get_portal().clients
>>> data = {"portal_type": "Client",
... "parent_path": api.get_path(clients),
... "title": "Chicken corp",
... "ClientID": "CC"}
>>> client1 = create(data)

>>> data = {"portal_type": "Client",
... "parent_path": api.get_path(clients),
... "title": "Beef Corp",
... "ClientID": "BC"}
>>> client2 = create(data)

>>> data = {"portal_type": "Client",
... "parent_path": api.get_path(clients),
... "title": "Octopus Corp",
... "ClientID": "OC"}
>>> client3 = create(data)

Update by resource and uid

We can update an object by providing the resource and the uid of the object:

>>> client_uid = api.get_uid(client1)
>>> data = {"ClientID": "CC1"}
>>> response = post("client/update/{}".format(client_uid), data)
>>> obj = get_item_object(response)
>>> obj.getClientID()
'CC1'

Update by uid without resource

Even easier, we can update with only the uid:

>>> data = {"ClientID": "CC2"}
>>> response = post("update/{}".format(client_uid), data)
>>> obj = get_item_object(response)
>>> obj.getClientID()
'CC2'

Update via post only

When updating by resource (without an UID explicitly set), the system expects a
the data to passed via POST to contain the item to be updated.

The object to be updated can be send in the HTTP POST body by using the uid:

>>> data = {"uid": client_uid,
... "ClientID": "CC3"}
>>> response = post("update", data)
>>> obj = get_item_object(response)
>>> obj.getClientID()
'CC3'

By using the path, as the physical path of the object:

>>> data = {"path": api.get_path(client1),
... "ClientID": "CC4"}
>>> response = post("update", data)
>>> obj = get_item_object(response)
>>> obj.getClientID()
'CC4'

Or by using the id of the object together with parent_path, as the physical
path of the container object:

>>> data = {"id": api.get_id(client1),
... "parent_path": api.get_path(clients),
... "ClientID": "CC5"}
>>> response = post("update", data)
>>> obj = get_item_object(response)
>>> obj.getClientID()
'CC5'

Do a transition

We can transition the objects by using the keyord transition in the data sent
via POST:

>>> api.is_active(client1)
True
>>> data = {"uid": api.get_uid(client1),
... "transition": "deactivate"}
>>> response = post("update", data)
>>> obj = get_item_object(response)
>>> api.is_active(obj)
False

We can update and transition at same time:

>>> data = {"uid": api.get_uid(client1),
... "ClientID": "CC6",
... "transition": "activate"}
>>> response = post("update", data)
>>> obj = get_item_object(response)
>>> api.is_active(obj)
True
>>> obj.getClientID()
'CC6'

Update restrictions

We get a 401 error if we try to update an object from inside portal root:

>>> data = {"title": "My clients folder",
... "uid": api.get_uid(clients),}
>>> post("update", data)
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 401: Unauthorized

We get a 401 error if we try to update an object from inside setup folder:

>>> cats_uid = api.get_uid(api.get_setup().bika_analysiscategories)
>>> data = {"title": "My Analysis Categories folder",
... "uid": cats_uid,}
>>> post("update", data)
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 401: Unauthorized

We cannot update the id of an object:

>>> original_id = api.get_id(client1)
>>> data = {"id": "client-123123",
... "uid": client_uid }
>>> response = post("update", data)
>>> obj = get_item_object(response)
>>> api.get_id(obj) == original_id
True

PUSH

Running this test from the buildout directory:

bin/test test_doctests -t push

Test Setup

Needed Imports:

>>> import json
>>> import transaction
>>> import urllib
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.jsonapi.interfaces import IPushConsumer
>>> from zope.component import getGlobalSiteManager
>>> from zope.interface import implements

Functional Helpers:

>>> def post(url, data):
... url = "{}/{}".format(api_url, url)
... browser.post(url, urllib.urlencode(data, doseq=True))
... return browser.contents

Variables:

>>> portal = self.portal
>>> portal_url = portal.absolute_url()
>>> api_url = "{}/@@API/senaite/v1".format(portal_url)
>>> browser = self.getBrowser()
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create a dummy IPushConsumer adapter:

>>> class DummyConsumerAdapter(object):
... implements(IPushConsumer)
...
... def __init__(self, record):
... self.record = record
...
... def process(self):
... if not self.record.get("target"):
... return False
... return True

>>> sm = getGlobalSiteManager()
>>> sm.registerAdapter(DummyConsumerAdapter, (dict,), IPushConsumer, name="dummy")
>>> transaction.commit()

Push with success

>>> post("push", {"consumer": "dummy", "target": "defined"})
'..."success": true...'

Push without success

If an adapter is registered, but it rises an exception, the outcome is failed:

>>> post("push", {"consumer": "dummy"})
'..."success": false...'

Non-registered adapter

>>> post("push", {"consumer": "zummy"})
Traceback (most recent call last):
[...]
HTTPError: HTTP Error 500: Internal Server Error

Changelog

1.2.5 (unreleased)

1.2.4 (2021-07-23)

	#41 Push endpoint for custom jobs

1.2.3 (2020-08-05)

	#40 Prevent the id of objects of being accidentally updated

	#40 Do not allow to update objects from setup folder

	#40 Do not allow to update objects from portal root

	#40 Fix upgrade does not work on post-only mode

	#40 Adapter for custom handling of update operation

	#37 Do not allow to create objects in setup folder

	#37 Do not allow to create objects in portal root

	#37 Adapter for custom handling of create operation

	#37 Make the creation operation to be portal_type-naive

	#35 Added catalogs route

	#34 Make senaite.jsonapi catalog-agnostic on searches

1.2.2 (2020-03-03)

	Missing package data

1.2.1 (2020-03-02)

	Fixed tests and updated build system

1.2.0 (2018-01-03)

Added

	Added parent_path to response data

	Allow custom methods as attributes in adapter

Removed

Changed

	Integration to SENAITE CORE

	License changed to GPLv2

Fixed

	#25 Null values are saved as ‘NOW’ in Date Time Fields

	Fixed Tests

Security

1.1.0 (2017-11-04)

	Merged PR https://github.com/collective/plone.jsonapi.routes/pull/90

	Get object by UID catalog

1.0.1 (2017-09-30)

	Fixed broken release (missing MANIFEST.in)

1.0.0 (2017-09-30)

	First release

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 senaite.jsonapi

 		
 Installation

 		
 JSON Viewers and REST clients

 		
 Quickstart

 		
 Version route

 		
 Content Routes

 		
 Get records full data

 		
 UID Route

 		
 Authentication

 		
 Login

 		
 Logout

 		
 Basic Authentication

 		
 API

 		
 Concept

 		
 Base URL

 		
 Resources

 		
 Operations

 		
 Users Resource

 		
 Overview

 		
 Catalogs Resource

 		
 Search Resource

 		
 Searches by catalog

 		
 Searches by index

 		
 Sorting and limiting results

 		
 Parameters

 		
 Response Format

 		
 CRUD

 		
 Unified API

 		
 CREATE

 		
 Example: Client creation

 		
 Example: Sample Type creation

 		
 Example: Sample Creation

 		
 READ

 		
 UPDATE

 		
 Example

 		
 DELETE

 		
 Example

 		
 Customizing

 		
 Adding a custom route provider

 		
 Adding a custom data adapter

 		
 Adding a custom data manager

 		
 Adding a custom field manager

 		
 Adding a custom catalog tool

 		
 Adding a custom catalog query adapter

 		
 Adding an adapter for create operation

 		
 Allow/disallow the creation of a content type

 		
 Custom creation of a content type

 		
 Adding an adapter for update operation

 		
 Allow/disallow to update an object

 		
 Custom update of an object

 		
 PUSH endpoint. Custom jobs

 		
 Doctests

 		
 AUTH

 		
 Test Setup

 		
 Login

 		
 Logout

 		
 VERSION

 		
 Test Setup

 		
 Authenticated user

 		
 Unauthenticated user

 		
 USERS

 		
 Test Setup

 		
 Get all users

 		
 Get current user

 		
 Get a single user

 		
 CATALOGS

 		
 Test Setup

 		
 Get all catalogs

 		
 Get a single catalog

 		
 SEARCH

 		
 Test Setup

 		
 Basic search

 		
 Sort and limit

 		
 Search without resource

 		
 Catalog search

 		
 CREATE

 		
 Test Setup

 		
 Create with resource

 		
 Create without resource

 		
 Create via post only

 		
 Required fields

 		
 Create a Client

 		
 Create a Client Contact

 		
 Create a Sample Type

 		
 Create a Laboratory Contact

 		
 Create a Department

 		
 Create an Analysis Category

 		
 Create an Analysis Service

 		
 Creating a Sample

 		
 Creation restrictions

 		
 READ

 		
 Test Setup

 		
 Get resource objects

 		
 Get by uid

 		
 UPDATE

 		
 Test Setup

 		
 Update by resource and uid

 		
 Update by uid without resource

 		
 Update via post only

 		
 Do a transition

 		
 Update restrictions

 		
 PUSH

 		
 Test Setup

 		
 Push with success

 		
 Push without success

 		
 Non-registered adapter

 		
 Changelog

 		
 1.2.5 (unreleased)

 		
 1.2.4 (2021-07-23)

 		
 1.2.3 (2020-08-05)

 		
 1.2.2 (2020-03-03)

 		
 1.2.1 (2020-03-02)

 		
 1.2.0 (2018-01-03)

 		
 1.1.0 (2017-11-04)

 		
 1.0.1 (2017-09-30)

 		
 1.0.0 (2017-09-30)

_static/up.png

_static/up-pressed.png

